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Abstract. The possible non-centric character of the jcosahedral Al-Pd-Mn phase has been
checked by measuring Bijvoet pairs above the Pd K edge on a single grain. The integrated
intensity of K L and — — K — L reflections is found to be identical within the experimental
errors. The computed intensity vardation for 45° phase differences are computed to be much
targer than the observed values. This indicates that the icosahedral phase is centrosymmetrical
or presents phases very close to 0 or x.

1. Introduction

The atomic structure of quasi-crystals is now mostly understood by means of high-
dimensional crystallography [1-5). In this scheme the guasi-periodic structure is given
a periodic image in a higher-dimensional space. This periodic space decomposes into two
subspaces: Ep,, the physical space, and Ep.q, the perpendicuilar space. For icosahedral
quasi-crystals the periodic space needs to have dimensions of at least 6. The periodic lattice
is decorated by atomic surfaces, which typically extend in Epp. The corresponding 3D
quasi-periodic structure is then obtained as a cut along Ey,; through the decorated periodic
lattice. A simple illustration of a 2D periodic image which generates a cut ID quasi-periodic
structure is given in figure 1(a).

The route from diffraction data to the atomic structure of a quasi-crystal is similar to
what is done in 3D crystallography [6,7]. The first step is the determination of Bravais
lattice, the point group and the space group of the diffraction pattern, with the proper
basis vectors. In a second step, a Patterson analysis generally allows one to approximate
the atomic surfaces. Finally one has to refine precisely the six-dimensional shape of the
different atomic surfaces. '

Most of the attention in the solution of quasi-crystal structures has been given to the
problems of determining and refining the shapes of the atomic surfaces, through a variety
of specific experimental and theoretical approaches [8-15]. In contrast, there has been
relatively Little work which directly addressed the determination of the crystallographic
point group, and in particular the presence or absence of inversion symmetry.

As in conventional crystallography, the experimental determination of inversion
symmetry from diffraction data is complicated by the fact that the observed intensities 7 (€))
derive from the absolute square of the atomic structure factor £(Q), so that I(Q) = I(—Q),
even if f(Q) = f*(—Q) is not equal to f(—(}). Patterson analyses on icosahedral Al~-Mn-
Si [6,9, 101, Al-Li-Cu {11], Al-Cu-Fe [16], and Al-Pd-Mn [17] show density correlations
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Figure 1. Example of a 1D quasi-periadic structure which is not centrosymmetrical, () The
periodic 2D image of the 1b structure, The square lattice is decorated with two segment lines
{‘atomic surfaces’) located at 7 and g = —74 in the square lattice. They have same length but
different thicknesses to represent different chemical species. (&) The corresponding 1D structure,
The two different atoms corresponding to the different chemical species are represented by
different dot sizes. (¢) The structure obtained when the two segment lines of {a) correspond to
the same chemical species. Local environments with centrosymmetrical character are shown by
an arow.

only on special point of the 6D cube, suggesting centrosymmetric structures, The only
density solution for such a Patterson function is one in which the structure is centric as long
as the positions of atomic surfaces are concerned. However, their shape might have only
235 symmetry, leading to a non-centric space group (16, 18]. Further refinements of atomic
structures in these materials, including contrast variation by isotopic substitution, have been
performed without any evidence for the absence of inversion symmetry. However, these
experiments are not directly sensitive to the presence of an inversion centre; non-centric
character would be manifest only by comparing the quality of fits for specific centric and
acentric atomic structures,

Three recent papers have addressed the problem of inversion symmetry in quasi-crystals
directly and they all find non-centrosymmetric structures. The first uses convergent-beam
electron diffraction to reveal that decagonal Al-Ni-Fe has the ron-centrosymmetric space
groupP10m2 [19]. The second and third apply multiple-beam dynamic diffraction to
icosahedral Al-Cu-Fe [20] and icosahedral Al-Pd—Mn [21] and claim that there is no
inversion symmeiry, in contrast with the results of detailed structural refinements on the
same materials, including isotopic [22] and isomorphic [17] contrast variation.
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Starting with this background knowledge, we have chosen a different experimental
technique which investigates inversion symmetry directly, namely the comparison of Bijvoet
pairs, Near the x-ray absorption edge, the atomic scattering factor shows a substantial phase
shift. If there is an acentric structure, the geometric structure factor is not purely real, and
reflections @ and —@Q will have different intensities. In the present study, we apply this
technique to icosahedral Al-Pd-Mn at the Pd edge.

2. Centrosymmetry in quasi-crystals

To illustrate the nature of inversion symmetry in a non-periodic structure, we shall use a
simple 1D quasi-crystalline model. The 2D image and the corresponding 1D quasi-perioadic
structure are presented in figures 1(e) and 1(b). Two different atomic surfaces have been
positioned in the square unit cell at r4 and 75 = —ra. As can be seen in the inset of
figure 1(a), 4 and rg have a component only along one of the edges of the unit ceil.
The two ‘atomic surfaces’ (segment lines} have the same length but different thicknesses to
represent different atoms; this is what introduces the lack of centrosymmetry. The structure
factor may be computed easily as

F(q) = G(Qperp)[(Pa explig » ra) + brexplig - rg)] (1

where g is a reciprocal lattice vector with indices ) and 3, G (gperp) is the Fourier transform
of the segment line, and &, and bg are the scattering lengths of atoms A and B, respectively.
if by = bg, the structure factor is a real quantity, but in general it will be a complex number.

What is the comresponding 1D stracture like? In particular, how does the presence or
absence of centrosymmetry show up? This is illustrated in figure 1(&), which is the result
of the physical cut through the decorated periodic lattice. The two different atoms A and B
are indicated by small and large dots corresponding to thin and thick atomic surfaces. Had
the two chemical species been identical, the structure would have been centrosymmetrical.
Let us first consider this case which is represented in figure 1(c). If the cut goes through
one lattice site, then this point will be the urigue centre of symmetry of the 1D structure.
Around this point, for each atom located at r there is an equivalent atom located in —r, up
to infinity. However, for a general position of the cut such as that represented in figure 1(a),
there is no point of the 1D quasi-periodic structure that is a centre of symmetry. There are,
however, sites of the periodic lattice arbitrarily close to the parallel space. Around such
sites the structure has a local environment showing a centrosymmetrical arrangement up to
some finite distance. Such sites are indicated by an arrow in figure 1(a)-1(c). We therefore
see that a centrosymmetric quasi-crystal contains centrosymmetric domains of bounded size
which can be shown to be quasi-periodically distributed.

Introducing the chemical decoration (atoms A and B) breaks centrosymmetry, as is
now obvious in figure 1(b). Finally, note that (0, n:) reflections will necessarily have
real structure factors. This is because the decoration of the square lattice involves only
a horizontal component. Thus only reflections of the form (r;, np) with ry 7 0 will be
complex numbers and have phases different from 0 or .

The icosahedral case is a generalization of this simple 1D example. The two possible
icosahedral point groups are 235 (¥) and m35 (¥;). Both have the same numbers of twofold,
threefold and fivefold symmetry axes. The addition of a centre of symmetry in ¥, leads to
new mirror planes. The possibility of an acentric icosahedral point group is illustrated in
ﬁguré 2 (taken from [25]). Associated to each point group there are three possible Bravais
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Figure 2. (a) Decorated icosahedron that is non-centrosymmetrical (from [25]). (&) Respective
positians of black and white areas of (2} distributed in a non-centrosymnetrical way.

bl

lattices: P, I, and F (derived from primitive cubic, body-centred cubic and face-centred
cubic 6D lattices). Screw axes or glide planes added to these Bravais lattices lead to five
additional non-symmorphic space groups, for a total of 11 [23-25].

The icosahedral Al-Pd-Mn phase exhibiis an I-type reciprocal iattice [26, 27], similar
to that of icosahedral Al-Cu~Fe and corresponding o an F-type direct lattice. There are
four possible space groups: two corresponding to ¥ and two corresponding to Y;. The
non-symmorphic space groups give rise to extinctions in the diffraction pattern. A careful
examination of the x-ray and neutron diffraction pattern shows that all reflections are present,
which rules out the existence of screw axes or glide planes. On the one hand the possible
non-symmorphic space group corresponding to ¥ requires that all reflections with 6D indices
[28] of the form {{, n,{, —,1,1), where I and » are integer and » is not a multiple of 5,
should be absent [23-25]. Reflection 18/29 (see [28] for the indexation scheme) with 6D
indices (2, 4,2, —2, 2, 2) which is of the required form is not extinguished in the case of
the icosahedral Al-Pd-Mn phase and comresponds to one of the most intense reflections.
On the other hand the possible non-symmorphic space group corresponding to Yy requires
that all reflections with 6D indices of the form (14, #2, i3, R4, ny, —r3) and such that #q +ny
is not a multiple of 4 should be absent. Reflection 15/23 with 6D indices (3, 3, 1, ~1,3, 1)
which is of the required form has been measured without ambiguity. We are thus left with
two possible symmorphic space groups: F235 or Fm35.

In the icosahedral case, because we have symmorphic space groups, reflections on
twofold, threefold and fivefold axes have real amplitudes even when considering the
F235 space group, as point out by Comier-Quiquandon et af [22). Reflections in planes
perpendicular to twofold axes (60 multiplicity in the m35 point group) will also have
real amplitudes. Only reflections in a general position (multiplicity, 120) can have phases
different from Q or .

As an example, we can demonstrate that reflections on a twofold plane have
a real amplitude as follows. To a point in the 6D cube with coordinates
R, = (Xpas Ypur Zpars Xperps Yperps Zperp) corresponds an equivalent point Ry =
(Xpar» ~Ypary —Zpurr Xperpy —Ypep, —Zperp) through a twofold rotation. Note that this
would not be the case for a twofold screw axis. Reflections lying in a twofold plane may
be expressed as @ =0, OYpu, QZpar, 0, QVperp, OZpep). When computing the structure
factor F(Q), the summation, which extends over all points in the 6D unit cell, may be
expressed by regrouping terms related by a twofold rotation such as ) and H,. The two
scalar products Ry -} and R - €) have the same magnitude and opposite signs, which leads
to a real structure factor. This relation does not depend on the specific decoration of the
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6D unit cell. We emphasize that this is an important consistency check for any experiment
intended to observe the absence of centrosymmetry in a quasi-crystal.

3. Experimental details

X-ray Bijvoet pair measurement above an absorption edge is a well known tool to distinguish
between centric and non-centric space groups [29]. When absorption and anomalous
scattering effects take place, the atomic scattering form factor is written

f=fo+ f+if

where fy is the usual atomic form factor, depending on the scattering wavevector, and f'
and f” depends on the x-ray wavelength but not on the scattering angle. f' is in phase
with fo, whereas f” presents a ';-JI' phase difference from fi (imaginary component). This
implies a breakdown of the Friedel law for non-centric space groups. The situation is
depicted in figure 3. Fa is the structure factor of the anomalous scattering element (Pd),
and Fp that of the other atoms. If the phase difference is not equal to 0 or =, then F(HKL)
will be different from F(—H — K — L).

f"ﬁa

Y

Teh

Figure 3. Wlustration of the pringiple of Bijvoet pair measurements. Fa is the stracture factor
of the anomalous scatterer and Fp the structure factor of the remaining structure, When the
anomalous effect takes place, f* and an f” component have to be added to Fa. Since the
phase difference Fj and f” is always iz, F(HKL) will have a different modulys from
F(-H—-K-L).

The single-grain sample used for the measurements was extracted from the upper part of
a Bridgman ingot. It is a “perfect’ icosahedral phase, with a composition Algs7Pd2 Mng 7
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[30]. The sample was polished into a spherical shape, with a diameter of 160 pm aod
glued on the tip of a glass fibre. Data collection was carmried out at the X3A2 beam line
of the National Synchrotron Light Source, Brookhaven. A 5i1(220) double monochromator
selected the incident energy of the unfocused beam. Integrated intensities were measured
by the @ scan method. The mosaic spread of the sample was about 0.04° and consisted of
two domains with 0.02% misorientation.

In order to enhance the effect, measurements were carried out just above the Pd K edge.
The f'- and f"-values at the working energy of 24 390 eV, obtained from a Kramers—Kronig
transform of the fluorescence spectrum measured through the Pd edge, are —5.17 and 3.55,
respectively. Each reflection was centred before the measurement of integrated intensity.
Because most of the reflections were vexy weak, especially at the high x-ray energy used,
each measurement was taken at a rate of 4 s per point.

We measured 21 reflections in a general symmetry position over a large range of
wavevectors. In order to check the reliability of the measurements, we also measured
20 reflections lying on a twofold plane in the same area of the reciprocal space. A subset
of these reflections was measured on a second sample.

4. Discussion

The integrated intensities and the corresponding Poissonian deviations opgissen and total
standard deviations oy are given in tables 1 and 2. Table 1 shows the results for those
reflections lying on a general position (multiplicity 120) and table 2 presents results of the
measurements for reflections lying on a symmetry position (multiplicity lower than 120)
that must fulfil the condition F{HK L) = F(—H —K —L). The total standard deviation is
the combination of the standard deviation opgisson corresponding to Poissonian statistics and
2 ‘standard deviation’ oqer corresponding to other causes such as beam instability or a non-
perfect spherical shape of the sample. An estimate of oome may be obtained from reflections
lying on a symmetry position (table 2). We know that these reflections have real structure
factors and this has indeed been observed within an accuracy of 3-5% for reflections with
an intensity greater than 3000. For these reflections the Poissonian standard deviation is
smaller than 0.02 and differences between the measurements allow us to evaluate oope,. The
standard deviation of the measured reflections may thus be written as 02, = o3, + o2
with Ggher = 0.031, where I is the integrated intensity.

Table 1 shows that for those reflections lying on a general position there are no
differences greater than three times the total standard deviation oig, except for one reflection
with indices 51/80. This refiection was measured again on another sample and did not show
any difference between F(HKL) and F({~H — K — L) this time. The results in tables 1
and 2 are quite similar, which indicates that the structure is likely to be centrosymmetrical,

In order to interpret these data, it is necessary to compare them with a specific model
of a deviation from centrosymmetry. This is estimated using a “first-order’ mode! extracted
from x-ray and neutron single-crystal diffraction data [18]. The model is centrosymmetrical,
but it may be used to evaluate the Pd and the Al-Mn contribution to the diffraction. An
arbitrary phase difference of 45° between the two partial structure factors Faj-mp and Fpg is
then introduced and the corresponding intensity variations are computed. In a real structure
there is obviously no reason for this phase difference to be identical for all structure factors.
However, in waiting for more detailed models, this allows a first evaluation of the expected
intensity variation for a 45° phase difference. The results are shown in the last column of
table 1. As can be seen, the intensity variation predicted for certain reflections is much
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larger than experimental errors. This can be illustrated in two different ways. The average
calculated relative intensity variation is equal to 0.12 whereas the measured vajue is 0.04.
This is a significant difference. One can also look at reflections with an intensity greater than
3000 (those for which the Poissonian standard deviation is smaller than 0.02 so that these
reflections are more meaningful). In all cases the calculated variation is much larger than
the measured value: for instance the 124/200 reflection has a calculated variation equal to
0.18 and a measured value lower than 0.01. All these results show that the phase difference
between the two sublattices Pd and Al-Mn is significantly smaller than 45°. A reasonable
lowest limit for measurable intensity differences would correspond to a phase shift of about
152,

The present experiment tests only the phase difference between Al-Mn and Pd
sublattices. A previous contrast variation experiment had already shown that the Al-Pd
and Mn sublattices also have a phase difference of 0 or m [17]. This was obtained by
measuring neutron powder diffraction spectra on a sample with isomorphic substitution
on the Mn sites. Because of the use of powder samples, these results are somewhat less
accurate than the present data, but they also show a centrosymmetrical character.

One possible drawback of this study would be the presence of 180° twins in the sample.
In this case, Bijvoet pairs will necessarily have the same intensity under all conditions,
because each peak is actually the superposition of Bragg peaks from two crystallites. In
particular, we have mentioned that a mosaic spread study has shown two coexisting domains
in the sample, with 0.02° misorientation. There is actually no way to decide whether this
misorientation is not 179.88° instead. However, it happens that one of the two domains
is twice the other. Thus a rotation of the sample by 180° would not result in equivalent
situations with respect to diffraction if both crystallites were acentric, but it is fair to say
that 180° twins are quite difficult to observe in quasi-crystals and their existence in the
present sample cannot be completely ruled out.

Finally, one may consider that these results strongly suggest that the icosahedral Al-Pd-
Mn phase is centrosymmetrical or at least presents a weak non-centrosymmetric character,
i.e. phases are close to 0 or , within a 15° uncertainty range.

5. Conclusion

The centric character of the icosahedral phase has been checked by measuring Bijvoet pairs
above the Pd edge . The measured intensities do not show strong variation for # XL and
—H — K — L reflections. The intensity variation calculated for a 45° phase difference
from an atomic model is larger than the measured value. These results are also consistent
with previous contrast variation experiments, which tested the Al-Pd versus Mn sublattices.
This suggests that the non-centric character, if any, must be very weak in the icosahedral
Al-Pd-Mn phase. Further experiments using a brighter beam are in progress.
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